Program > Program CAp

Monday

Invited Speaker 1 (Juliette Sénéchal) 9:15 - 10:15

AI Alignment Through EU AI Act
 
The launch of Chat GPT, a general-purpose generative AI system, on the global market in November 2022 has led to a proliferation of reflections on the new risks posed to humans by artificial intelligence systems. In particular, these reflections have highlighted the fact that generative AI, as a substitute for human language and human creativity, runs the risk of exposing humans to forms of cultural uniformisation and disinformation by deepfakes, undermining the ability of humans to compose a society and to adapt themselves to the constraints of their territory. In the context of these reflections, it is possible to observe a proliferation of soft and hard norms emanating from companies, governments on different continents, supranational organisations, researchers, etc., aimed at bringing AI systems into alignment with human values. This proliferation of norms raises three questions: what human values should be protected at a time when generative AI is taking a technological leap forward? What types of norms should be prioritised to implement this protection effectively: ethical norms, legal acts, technical standardisation? What territorial scope should these norms have? This contribution will study the normative approaches proposed by the future European regulation on artificial intelligence (the AI Act) in order to address these questions.

Session 1 (Fairness ~ Interpretability) 10:45 - 12:00

Chair: Romaric Gaudel

TitleAuthorsPresentation length
Assessing Uncertainty in Similarity Scoring: Performance & Fairness in Face Recognition Jean-Rémy Conti, Stephan Clémençon 15 min
Impact de la Perturbation des Prédictions sur l’Équité en Classification Binaire et Linéaire Vitalii Emelianov, Michaël Perrot 5 min
Une borne PAC-Bayésienne sur une mesure de risque pour l'apprentissage équitable Hind Atbir, Farah Cherfaoui, Guillaume Metzler, Emilie Morvant, Paul Viallard 5 min
Apprentissage de Modèles Équitables via Repondération en Apprentissage Fédéré Paul Andrey, Brahim Erraji, Michaël Perrot 5 min
Augment to Interpret: Unsupervised and Inherently Interpretable Graph Embeddings Gregory Scafarto, Madalina Ciortan, Simon Tihon, Quentin Ferré 15 min
Affiner SHAP : Améliorer la stabilité grâce à la sélection de voisins en couches Gwladys Kelodjou, Laurence Rozé, Véronique Masson, Luis Galárraga, Romaric Gaudel, Maurice Tchuente, Alexandre Termier 5 min
Weighted majority vote using Shapley values in crowdsourcing T. Lefort, B. Charlier, A. Joly, J. Salmon 5 min
Exploration de la sémantique dans l’attention d’un modèle de langue pré-entraîné Frédéric Charpentier, Adrien Guille, Jairo Cugliari 5 min

Invited Speaker 2 (Celestine Mendler-Dünner) 13:30 - 14:30

Performativity in Machine Learning

Algorithmic predictions create expectations, inform decisions and steer consumption. As such, predictions used in societal systems not only describe the population they aim to predict, but they have the power to change it; a prevalent phenomenon often neglected in theories and practices of machine learning. In this talk, I will start by introducing the calculus of performative prediction, that conceptualizes this phenomenon by allowing the predictive model to influence the distribution over future data. This dynamic perspective on prediction elucidates new solution concepts, optimization challenges, and brings forth interesting connections to concepts from causality and game theory that I will discuss. Moreover, it allows us to articulate two mechanisms fundamental to prediction, learning and steering, making explicit the important role of power in prediction, and giving us a means to measure it. I will end my talk on a discussion of collective action as a strategy to resist the power of digital platforms.

Session 2 (Optimal Transport ~ Learning Theory) 14:30 - 16:00

Chair: Gilles Gasso

TitleAuthorsPresentation length
A framework for deep Supervised Graph Prediction Paul Krzakala, Junjie Yang, Rémi Flamary, Florence D'Alché, Charlotte Laclau, Matthieu Labeau 15 min
Learning via Wasserstein-Based High Probability Generalisation Bounds Paul Viallard, Maxime Haddouche, Umut Simsekli, Benjamin Guedj 15 min
Exploiting Edge Features in Graph-based Learning with Fused Network Gromov-Wasserstein Distance Junjie Yang, Matthieu Labeau, Florence d'Alché-Buc 5 min
Détection non supervisée d'anomalies dans les images satellites pour le monitoring des surfaces océaniques par une composition d'ACP robuste et d'un test d'adequation sur la distance de Wasserstein entre processus ponctuels Julien Bastian, Stephane Chretien, Ben Gao, Rémi Vaucher 5 min
Régularisation implicite dans la décomposition de Tucker sur-paramétrée : parcimonie structurée et approximation de rang faible Kais HARIZ, Hachem Kadri, Stéphane Ayache, Maher Moakher, Thierry Artières 15 min
Bornes en Généralisation PAC-Bayes pour RNN Simples ne dépendant pas de la longueure des Séquences Volodimir Mitarchuk, Clara Lacroce, Eyraud Rémi, Rémi Emonet, Amaury Habrard, Guillaume Rabusseau 5 min
A Symmetry-Aware Exploration of Bayesian Neural Network Posteriors Olivier Laurent, Emanuel Aldea, Gianni Franchi 5 min
Active Fourier Auditor for Estimating Distributional Properties of Machine Learning Models Ayoub Ajarra, Bishwamittra Ghosh, Debabrota Basu 5 min

Session 3 (Decentralized Learning ~ Privacy ~ Adversarial Attacks) 16:30 - 17:45

Chair: Marc Tommasi

TitleAuthorsPresentation length
Apprentissage Privé Décentralisé par Marche Aléatoire Edwige Cyffers, Aurélien Bellet, Jalaj Upadhyay 15 min
Reconstruction de données en Apprentissage Décentralisé Abdellah El Mrini, Edwige Cyffers, Aurélien Bellet 5 min
Apprentissage Fédéré pour Inférences Causales : Estimer l'Effet Traitement avec des Données Décentralisées Rémi Khellaf, Aurélien Bellet, Julie Josse 5 min
Apprentissage décentralisé respectueux de la vie privée à faible coût Sayan Biswas, Davide Frey, Romaric Gaudel, Anne-Marie Kermarrec, Dimitri Lerévérend, Rafael Pires, Rishi Sharma, François Taïani 5 min
On the Complexity of Differentially Private Best-Arm Identification with Fixed Confidence Achraf Azize, Marc Jourdan, Aymen Al Marjani, Debabrota Basu 15 min
DP-SGD with weight clipping Antoine Barczewski, Jan Ramon 5 min
Neural ODE à divergence nulle pour la classification Zakaria Jarraya, Simon Benaïchouche, Lucas Drumetz, Douraied Ben Salem, François Rousseau 5 min
Confidentialité Pufferfish de Rényi : Mécanismes Additifs Généraux et Amplification de Confidentialité par Itération Clément Pierquin, Aurélien Bellet, Marc Tommasi, Matthieu Boussard 5 min

Discussion around Reviews and LLMs 17:45 - 18:15

Session Poster 1 18:15 - 19:30

Tuesday

Prix de Thèse SSFAM/AFRIF 9:00 - 10:15

TitleAuthorsPresentation length
Remise des prix SSFAM, AFRIF 15 min
Towards Securing Machine Learning Algorithms through Misclassification Detection and Adversarial Attack Detection Federica Granese 5 min
Combinaison de réseaux de régulation génique et d’apprentissage statistique séquentiel pour le repositionnement de médicaments Clémence Réda 5 min
Diverse and Efficient Ensembling of Deep Networks Alexandre Ramé 15 min
Efficient Neural Networks: Post Training Pruning and Quantization Édouard Yvinec 25 min

Joint Session with RFIAP 1 10:45 - 12:00

TitleAuthorsPresentation length
Random matrix analysis to balance between supervised and unsupervised learning under the low density separation assumption Vasilii Feofanov, Malik Tiomoko, Aladin Virmaux 15 min
Find the Lady: Permutation and Re-Synchronization of Deep Neural Networks Carl De Sousa Trias, Mihai Mitrea, Attilio Fiandrotti, Marco Cagnazzo, sumanta chaudhuri, Enzo Tartaglione 15 min
Inverse problem regularization with hierarchical variational autoencoders Jean Prost, Antoine Houdard, Andres Almansa, Nicolas Papadakis 15 min
Sequential Representation Learning via static-dynamic Conditional Disentanglement Mathieu Cyrille Simon, Pascal Frossard, Christophe De Vleeschouwer 15 min

 Invited Speaker 3 (Matthieu Cord) 13:30 - 14:30

Vision and Language with transformers

 

Since the seminal publication on transformers in Natural Langage Processing, the Computer Vision community has rapidly adopted and adapted this model to a multitude of vision tasks. In this seminar, I will trace these major developments, starting with image classification. I will then explore various extensions, such as object detection, image segmentation and captioning. In particular, this will enable us to illustrate how transformers have revolutionized the modeling of Vision and Language relationships.

Session 4 (Graphs ~ Optimization) 14:30 - 16:00

Chair: Charlotte Laclau

TitleAuthorsPresentation length
Modélisation continue des séries temporelles pour l'imputation et la prévision avec des représentations neuronales implicites Etienne Le Naour, Louis Serrano, Léon Migus, Yuan Yin, Ghislain Agoua, Nicolas Baskiotis, Patrick Gallinari, Vincent Guigue 15 min
SANGEA: Scalable and Attributed Network Generation Valentin Lemaire, Youssef Achenchabe, Lucas Ody, Houssem Eddine Souid, Gianmarco Aversano, Nicolas Posocco, Sabri Skhiri 5 min
Sur l'amélioration des transformers pour la prévision de séries temporelles en évitant les mauvais minima locaux Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Palpanas, Ievgen Redko 5 min
Graph-Survival: A Survival Analysis Framework for Machine Learning on Temporal Networks Mathilde Perez, Raphael Romero, Bo Kang, Tijl De Bie, Jefrey Lijffijt, Charlotte Laclau 5 min
Sketch In, Sketch Out: Accelerating both Learning and Inference for Structured Prediction with Kernels Tamim El Ahmad, Luc Brogat-Motte, Pierre Laforgue, Florence d'Alché-Buc 15 min
Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias Ambroise Odonnat, Vasilii Feofanov, Ievgen Redko 15 min
Support Exploration Algorithm: estimateurs directs et reconstruction parcimonieuse Mimoun Mohamed, Francois Malgouyres, Valentin Emiya, Caroline Chaux 5 min
SCAFFLSA: Quantification et élimination du biais dû à l'hétérogénéité en approximation stochastique linéaire et TD learning Paul Mangold, Sergey Samsonov, Safwan Labbi, Ilya Levin, Reda ALAMI, Alexey Naumov, Eric Moulines 5 min
Preserving Calibration by Tailoring Mixup to Data Quentin Bouniot, Pavlo Mozharovskyi, Florence d'Alché-Buc 5 min

Session 5 (Machine Learning and its Applications) 16:30 - 17:45

Chair: Vincent Guigue

TitleAuthorsPresentation length
Apprentissage automatique informé par la physique : vers une meilleure compréhension de l’interaction laser-matière Fayad Ali Banna, Jean-Philippe Colombier, Rémi Emonet, Marc Sebban 15 min
Erreur d’Approximation pour les Fonctions Sobolev Regulières avec des Réseaux de Neurones tanh : Impact Theorique sur les PINNs Benjamin Girault, Rémi Emonet, Amaury Habrard, Jordan Patracone, Marc Sebban 5 min
Bregman Fourier Neural Operators Abdel-Rahim MEZIDI, Rémi Emonet, Amaury Habrard, Jordan PATRACONE, massimiliano pontil, Saverio Salzo, Marc Sebban 5 min
Domain Translation via Latent Space Mapping Tsiry Mayet, Simon Bernard, Clement Chatelain, Romain Herault 15 min
RelevAI-Reviewer: A Benchmark on AI Reviewers for Survey Paper Relevance Paulo Henrique Couto, Quang Phuoc Ho, Nageeta Kumari, Benedictus Kent Rachmat, Thanh Gia Hieu Khuong, Ihsan Ullah, Lisheng Sun-Hosoya 5 min
When Quantization Affects Confidence of Large Language Models? Irina Proskurina, Luc Brun, Guillaume Metzler, Julien Velcin 5 min
Fine-grained probing of foundation models in the auditory modality Etienne Bost, Mitsuko Aramaki, Richard Kronland-Martinet, Sølvi Ystad, Thierry Artières, Thomas Schatz 5 min

Assemblée Générale 17:45 - 18:30

Session Poster 2 18:30 - 19:30

Wednesday

Invited Speaker 4 (Xavier Alameda-Pineda) 9:00 - 10:00

Learning for Companion Robots: Preparation and Adaptation

 

Companion and social robots are a chimeric mirage. On the one side, they are part of our collective representation of ready-to-deploy technological developments. On the other side, there are a series of scientific and technological barriers to such deployment. One of the scientific challenges is the difficulty of such robots to successfully perform in the wide variety of environments and social situations they need to face. In this talk, a series of works developed at the RobotLearn team at Inria at Univ. Grenoble Alpes will be presented, all aligned with the philosophy of developing learning strategies that would allow a social/companion robotic platform to quickly adapt its perception and action models to unseen situations. Applications such as multi-person tracking, audio-visual speech modeling, and navigation policies will be discussed.

Joint Session with RFIAP 2 10:30 - 12:00

Chair: Elisa Fromont

TitleAuthorsPresentation length
NECO: NEural Collapse Based Out-of-distribution detection Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine Manzanera, Gianni Franchi 15 min
Mining bias-target Alignment from Voronoi Cells Remi Nahon, Van-Tam Nguyen, Enzo Tartaglione

15 min

Perceptual Scales Predicted by Fisher Information Metrics

Jonathan Vacher, Pascal Mamassian

15 min

Collaborating Foundation Models for Domain Generalized Semantic Segmentation

Yasser Benigmim, Subhankar Roy, Slim Essid, Vicky Kalogeiton, Stéphane Lathuilière

15 min

Online user: 3 Privacy
Loading...